skip to main content


Search for: All records

Creators/Authors contains: "Smith, Christine"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The root-associated microbiome (rhizobiome) affects plant health, stress tolerance, and nutrient use efficiency. However, it remains unclear to what extent the composition of the rhizobiome is governed by intraspecific variation in host plant genetics in the field and the degree to which host plant selection can reshape the composition of the rhizobiome. Here, we quantify the rhizosphere microbial communities associated with a replicated diversity panel of 230 maize ( Zea mays L .) genotypes grown in agronomically relevant conditions under high N (+N) and low N (-N) treatments. We analyze the maize rhizobiome in terms of 150 abundant and consistently reproducible microbial groups and we show that the abundance of many root-associated microbes is explainable by natural genetic variation in the host plant, with a greater proportion of microbial variance attributable to plant genetic variation in -N conditions. Population genetic approaches identify signatures of purifying selection in the maize genome associated with the abundance of several groups of microbes in the maize rhizobiome. Genome-wide association study was conducted using the abundance of microbial groups as rhizobiome traits, and n=622 plant loci were identified that are linked to the abundance of n=104 microbial groups in the maize rhizosphere. In 62/104 cases, which is more than expected by chance, the abundance of these same microbial groups was correlated with variation in plant vigor indicators derived from high throughput phenotyping of the same field experiment. We provide comprehensive datasets about the three-way interaction of host genetics, microbe abundance, and plant performance under two N treatments to facilitate targeted experiments toward harnessing the full potential of root-associated microbial symbionts in maize production. 
    more » « less
  2. Abstract

    Classical genetic studies have identified many cases of pleiotropy where mutations in individual genes alter many different phenotypes. Quantitative genetic studies of natural genetic variants frequently examine one or a few traits, limiting their potential to identify pleiotropic effects of natural genetic variants. Widely adopted community association panels have been employed by plant genetics communities to study the genetic basis of naturally occurring phenotypic variation in a wide range of traits. High-density genetic marker data—18M markers—from 2 partially overlapping maize association panels comprising 1,014 unique genotypes grown in field trials across at least 7 US states and scored for 162 distinct trait data sets enabled the identification of of 2,154 suggestive marker-trait associations and 697 confident associations in the maize genome using a resampling-based genome-wide association strategy. The precision of individual marker-trait associations was estimated to be 3 genes based on a reference set of genes with known phenotypes. Examples were observed of both genetic loci associated with variation in diverse traits (e.g., above-ground and below-ground traits), as well as individual loci associated with the same or similar traits across diverse environments. Many significant signals are located near genes whose functions were previously entirely unknown or estimated purely via functional data on homologs. This study demonstrates the potential of mining community association panel data using new higher-density genetic marker sets combined with resampling-based genome-wide association tests to develop testable hypotheses about gene functions, identify potential pleiotropic effects of natural genetic variants, and study genotype-by-environment interaction.

     
    more » « less
  3. Abstract

    Advancements in the use of genome‐wide markers have provided unprecedented opportunities for dissecting the genetic components that control phenotypic trait variation. However, cost‐effectively characterizing agronomically important phenotypic traits on a large scale remains a bottleneck. Unmanned aerial vehicle (UAV)‐based high‐throughput phenotyping has recently become a prominent method, as it allows large numbers of plants to be analyzed in a time‐series manner. In this experiment, 233 inbred lines from the maize (Zea maysL.) diversity panel were grown in the field under different nitrogen treatments. Unmanned aerial vehicle images were collected during different plant developmental stages throughout the growing season. A workflow for extracting plot‐level images, filtering images to remove nonfoliage elements, and calculating canopy coverage and greenness ratings based on vegetation indices (VIs) was developed. After applying the workflow, about 100,000 plot‐level image clips were obtained for 12 different time points. High correlations were detected between VIs and ground truth physiological and yield‐related traits. The genome‐wide association study was performed, resulting inn = 29 unique genomic regions associated with image extracted traits from two or more of the 12 total time points. A candidate geneZm00001d031997, a maize homolog of theArabidopsis HCF244(high chlorophyll fluorescence 244), located underneath the leading single nucleotide polymorphisms of the canopy coverage associated signals were repeatedly detected under both nitrogen conditions. The plot‐level time‐series phenotypic data and the trait‐associated genes provide great opportunities to advance plant science and to facilitate plant breeding.

     
    more » « less